首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 黎曼几何
Questions in category: 黎曼几何 (Riemannian Geometry).

共轭点(conjugate point)

Posted by haifeng on 2017-08-13 22:00:09 last update 2017-08-14 09:26:20 | Answers (0)


设 $p$ 和 $q$ 是黎曼流形 $M$ 上的两个点, 且假设存在一条测地线 $\gamma$ 连接这两个点. $\gamma(0)=p$, $\gamma(1)=q$. (注意不是任意两个点都存在一条测地线连接它们. 如果是测地完备(geodesically complete)的黎曼流形, 则当然可以.)

我们称这两点沿着 $\gamma$ 是互为对方的共轭点, 如果存在沿着 $\gamma$ 的一个非零 Jacobi 场 $J$, 使得 $J(p)=J(q)=0$.

 

Remark:

根据Jacobi场的定义, 存在 $\gamma$ 附近的一族测地线 $\gamma_{\tau}(t)$, $\gamma_0=\gamma$, 使得 $\frac{\partial}{\partial\tau}\gamma_{\tau}(t)\biggr|_{\tau=0}=J(t)$, $J(t)$ 即是沿 $\gamma$ 的 Jacobi 场. 如果它们都是从 $p$ 点出发($\gamma_{\tau}(0)=p$), 那么它们中每一条的“另一点”$\gamma_{\tau}(1)$ 非常靠近 $q$.

注意我们只能说 $\gamma_{\tau}(1)$ 非常靠近 $q$, 不能说它们都等于 $q$, 甚至都不是 $q$.  也就是如果 $p$ 和 $q$ 共轭, 则不是必须存在两条连接 $p$ 和 $q$ 的测地线. 因为定义的要求知识 $J(p)=J(q)=0$, 如果写成参数 $t$, 则 $J(0)=J(1)=0$.

$J(1)=0$ 即 $\frac{\partial}{\partial\tau}\gamma_{\tau}(1)\biggl|_{\tau=0}=0$. 写成极限的形式, 如下:

\[
\lim_{\Delta\tau\rightarrow 0}\frac{\gamma_{\tau+\Delta\tau}(1)-\gamma_{\tau}(1)}{\Delta\tau}=0,
\]

 

 

 

 


References:

https://en.wikipedia.org/wiki/Conjugate_points